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PHYSICOMECHANICAL NATURE OF THE EFFECT OF MATERIAL STRENGTHENING 

FOR WHISKERS AND THIN FILAMENTS 

V. Z. Vasil'ev and S. Yu. Kaptelin UDC 620.10 

Numerous experiments by researchers at home and abroad have established the fact of 
a marked increase in the material strength of whiskers and thin filaments with a reduction 
in the characteristic size of them, i.e., the diameter or cross-sectional area. Existing 
hypotheses about the nature of this phenomenon are generally of a phenomenological character 
and they do not provide an explanation at the microlevel. 

Concepts are advanced in this work which in the opinion of the authors make it possible 
to give a physicomechanical explanation of the strengthening effect. 

i. The first researcher to establish reliably a connection between the material strength 
of a fine filament and its cross-sectional size was apparently Griffith [I]. Tests for 
breaking glass rods with diameters of i0-i00 ~m showed that the material strength of speci- 
mens achieved is significantly above the normal technical strength for a given material. 
Confirmation and further development of the results in [I] was obtained in tests on crystals 
of antimony, silicon, salt columns, and quartz filaments [2-5]. 

Subsequently experiments spread to metal whiskers and fine metal filaments. The results 
of tests by Herring and Holt with tin crystals are well-known. Experiments were carried out 
in [6-8] with copper and iron whiskers. For metals it was normally shown that with small 
testspecimen diameters (about 1 ~m) the material strength increases appraoching the theoreti- 
cal strength. By theoretical strength o t we understand the limiting value of ultimate break- 
ing resistance for material with an "ideal" structure. 

A considerable amount of data has been accumulated recently in tests on crystals con- 
sisting of a structural base of various ceramics, and cemented and gypsum stones. These 
results are particularly reflected in [9-11]. 

By comparing and analyzing the numerous experimental results for different materials 
independent of the chemical nature and method of preparation it is possible to conclude that 
there is a clear connection between material strength and the cross-sectional size of a test 
whisker Or a thin fiber. 

2. Many researchers have attempted to explain the material strengthening effect de- 
scribed above for specimens of small size. In [i] an effect of a denser surface layer 
on the strength of thin filaments was suggested. However, subsequent tests [12] and par- 
ticularly in [5] disproved this hypothesis. It was shown that even if some oriented layer 
on the surface of glass or quartz exists, its effect on the strength properties of specimens 
is hardly perceptible. Nonetheless, other concepts have been advanced in one form or another 
using the effect of a surface layer of a test specimen on material strength. For example, 
Ienckel-Mfinster [13] considered that forces of surface tension fulfill a specific strength- 
ening role. He suggested an equation for describing the relationship between breaking, peri- 
meter, and specimen cross section: 

a f j=  a + b K / f .  

Here of is material ultimate breaking strength; K, F are specimen perimeter and cross-sec- 
tional area; a, b are constants determined from an experiment. 
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Since in the case of a round cross section the ratio of perimeter to area is at a minimum, 
a conclusion follows from the Ienckel-Mfinster assumption: compared with any other specimeni 
cylindrical specimens should be the strongest. However, this result was disproved subse- 
quently by the tests of a number of researchers, and even by Ienckel-Munster himself testing 
specimens of an elliptical cross section. Thereby the idea of an effect on the material 
strength of thin filaments by surface tension was disproved. 

Aleksandrov and Zhurkov attempted to connect the state of the surface layer with the 
strength of thin specimens [5]. They suggested the existence of defects of a different type, 
the most critical of which with greatest probability are encountered at the surface. As a 
calculation equation connecting the material strength and radius of a test filament the fol- 
lowing relationship was suggested 

= a  + b/r q-c,  

where a is material technical strength realized in macrospecimens; b, c are constants deter- 
mined by experiments. 

The idea of Aleksandrov and Zhurkov was further developed in [14-16]. In [16] the 
connection of strength of with a characteristic specimen size a was analyzed: 

= o t (a,, a).  

Here a, is the size of a "defect-free" crystal with theoretical strength Or; i is index of 
the intensity of a reduction in strength connected in each specific case with experimental 
data given statistical treatment. 

Concerning all of the hypotheses in question it is possible to say that they are essen- 
tially loose in nature. The reasons for strengthening treated phenomenologically from the 
position of statistical approaches are not revealed from a physicomechanical point of view. 

3. In our opinion only the fact of the presence of defects in a "nonideal" specimen 
is indisputable in all modern concepts of the mechanism of material strengthening for whiskers 
and thin crystals. It appears to us that subsequent constructions connected with widely 
known versions confirming that the greater specimen volume and section, the greater the prob- 
ability of the presence of "critical" crack-like defects in it and consequently the lower 
the material strength, are less convincing. In view of this it is of interest to consider 
this phenomenon from the position of the physicomechanical nature. 

As is well-known from theory, crack-like defects lead to pronounced stress concentra- 
tion. The latter increases infinitely at the mouth of a crack causing occurrence of the so- 
called feature of stress-strain state. Consequently, with any small but finite loads a 
specimen with a crack will develop zero strength, which is of course not actually observed. 
This contradiction is even noted by Griffith [i]. Proceeding from energy considerations 
he obtained an equation which connects the strength of a brittle materials of with the size 
of a crack-like defect ~: 

of  = V~2?E/nl ( 3 . 1 )  

(E i s  normal e l a s t i c i t y  modulus,  7 i s  m a t e r i a l  s p e c i f i c  s u r f a c e  e n e r g y ) .  

Subs e que n t l y ,  a f t e r  t he  p u b l i c a t i o n  of  [17, 18],  t he  p r e v a i l i n g  p o s i t i o n  in c r ack  mechanics  
and c o r r e s p o n d i n g l y  removal  of  the  c o n t r a d i c t i o n  no ted  above was the  idea  of  a s t r e s s  i n t e n s i t y  
f a c t o r .  This  s p e c i f i c  c h a r a c t e r i s t i c  o f  a s t r e s s e d  s t a t e  (an e s p e c i a l l y  un ique  f a c t o r )  i s  
connected with material strength by the equation 

of= Kc/]/-~,  (3.2) 

where K c is limiting value of intensity factor for a material established in an experiment. 
Normallythe strength condition in this case is replaced by comparing the value found theo- 
retically for K with K c. 

It can be seen that Eqs. (3.1) and (3.2) are similar in structure. They do not contain 
parameters which consider the scale effect on material strength. This scale factor may be 
introduced in a given case only by means of the reasoning mentioned above about the correla- 
tion between the specimen cross-sectional area or its volume and the probability of defects ap- 
pearing. For this reason it seems to us that another method is desirable for constructing 
the connection between stress-strain state and material strength for thin filaments and 
crystals. 
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4. Infinite stresses in the theoretical solution are a consequence of one of the main 
properties of the classical model of a solid deformed body, i.e., continuity. However, 
actual materials even at the atomic level are devoid of this property which in reality enters 
into the contradiction. 

As shown in [19] this contradiction is avoided quite elegantly by changing over as 
required from stresses to forces which operate in the structural connections of a substance. 
We show that this approach is fruitful not only from the point of view of determining the 
critical length of a Griffith crack, but also in the scheme of explaining the reasons for 
an increase in the material strength of thin filaments. 

We consider extension of a strip with thickness b and width 2a weakened by two through 
cracks each of length s (Fig. i). In essence this problem models some particular case of filamentary 
crystal material weakening by surface defects. The distribution of normal stresses in the 
connecting strip, determined by solving the plane problem of elasticity theory, is character- 
ized by the equation 

(P is force extending the strip, a, = a - ~, b = i). Subsequently, assuming that the crack 
has small dimensions (~ ~ a) we assume that a, ~ a. It can be seen that with x + a, stress 
increases infinitely, i.e., there is a typical stepped property ahead of the crack tip. 

Following Novozhilov we introduce the notion of a structural cell of material with char- 
acteristic size 6. We compute the elementary normal force AN arriving on a single structural 
connection isolated immediately ahead of the crack tip: 

a~ o~ 

~-o o,-6 (4.  i ) 
AN = PI= [n /2  - -  arc s in  (1 - -  5/a,)l. 

I n  t h o s e  c a s e s  w h e n  6 K a ,  ~ a ,  i . e . ,  t h e  s i z e  o f  t h e  s t r u c t u r a l  c e l l  i s  m a r k e d l y  l e s s  
than the characteristic strip transverse dimension, the result (4.1) may be presented in 
simpler form 

ar 

A N  ~-- P/a ],'r~a, S d x / / a ,  --  x _~ P 1/-21/-6/~ lira. ( 4 . 2 )  
a,--5 

We introduce the notation for the relative dimension of a structural cell: ~ = 6/a. 
Then parameter $ appears in Eqs. (4.1) and (4.2). A simpler force in structural connections 
may be calculated with uniform stress distribution: ANav = (P/2ab)b6 = P$/2. 

As a result of this it is possible to introduce the notation of elementary force con- 
centration and to determine parameter ~N, i.e., the force concentration factor close to a 
particular point: ~N = AN/ANav" Depending on the particular type of the connection used 
[(4.1) or (4.2)] for ~N calculation equations are obtained: 

~N = 2[n/2 -- arc  s i n  (1 -- ~ ) ] / n ~  

o r  

~ = 2 V ~ / ~ 1 / %  (4.3) 

6 0 0  



Since in real objects, for example filamentary crystals, $ is small compared with unity, 
then in order to analyze experimental results we shall use expression (4.3). It is clear 
that with $ § 0, when the discrete model is converted into a continuous material, a N in- 
creases infinitely and as a result it conforms with the normal stress concentration factor. 
An equation identical to (4.3) for a N is also obtained for a filament of round cross section 
with an encircling notch-crack. In addition, it is necessary to note that the connection 
aN(S) may be obtained not only for a crack, but also for any other form of stress corlcentra- 
tion leading to the feature of a stress-strain state [20, 21]. 

Proceeding from the idea of a concentration factor for elementary forces it is possible 
to arrive at a qualitative an quantitative explanation of the effect of a reduction in fila- 
mentary crystal strength as their cracks grow. If a N = I, i.e., the object degenerates into 
almost one or two defect-free structural connections, in a notional experiment we obtain 
of = ot, i.e., ultimate breaking strength agrees with the theoretical strength. 

As cross section increases and correspondingly a N grows failure occurs with of < o t, 
i.e., in a "critical" section where the maximum stresses distributed over the area of a 
structural cell reach ot" This relates to the condition ~NOf = o t. Whence the main calcu- 
lation equation develops for determining the technical material strength of a thin filament: 

~f : %/~N, (4.4) 

By using approximate relationship (4.3) in (4.4), we obtain 

of : ~ pr[~tl2/2. (4.5) 

For graphical analysis it is desirable to present Eq. (4.5) a little differently: 

Since parameters o t and 6 at the microlevel of the structure are constant for each spe- 
cific material, then expression (4.6) on coordinate axes of ~ i/~ in fact determine the scale 
dependence of technical strength on the thickness of a filamentary crystal or thin filament. 

Evaluation of theoretical results, found using Eq. (4.6), is carried out on the basis 
of comparison with known experimental data for the connection of = f(a) for filamentary 
crystals of AI203 [9], copper and iron [6-8], silicon [3], and glass filament [i]o Consider- 
ing that these materials experience brittle failure, for the size of a structural cell at 
the microlevel it is possible to take some parameter of the atomic lattice. Thus for A].203, 
copper, iron, and silicon the size of an atomic bond ~ = 100-200 nm, and for glass the size of 
a crystallite 6 = 1500-2000 nm are used. 

By using the relationship of = f(a) and corresponding values for 6 we construct experi- 
mental curves 1 with of = f(i/6 = a/6) for AI203 (Fig. 2), copper and iron (Fig. 3), silicon 
(Fig. 4), and glass filaments (Fig. 5). 

Also by taking as theoretical strength o t the following values according to Kelly [22]: 
for AI203, o t = 47,000 MPa, for silicon o t = 32,000 MPa, for glass o t = 16,000 MPa; and ac- 
cording to Geminov [7] for copper and iron o t = 39,000 MPa, from Eq. (4.6) we construct ana- 
lytical curves for the dependence 2 with of = f(i/~) for the materials in question (Figs. 
2-5). Comparison of curves 1 and 2 shows that they are in good qualitative and quantitative 
agreement. 

of~ MPa 

~ "  ~ ~ A  , 10007 ,oco ? 

100 ~ . . . . . . . . . . . . .  
3.102 I.I0 "~ 1.104 I_ a 700 

r ~ 5.10 ~ 

Fig. 4 

O'E, ~ a  

. . . . .  }D 

Fig. 5 

601 



In spite of the considerable number of publications connected with explaining the es- 
sence of the material strengthening effect with a change over to small size specimens the 
problem is still not finally resolved. 

A hypothesis is formulated in the present work which makes it possible, in the opinion of 
the authors, to disclose the physicomechanical nature of the effect of an increase in material 
strength in whiskers and thin filaments. It appears that the approach in question may serve 
as a basis for a phenomenological hypothesis for the strength of brittle materials with a 
distinct crystalline structure in structural articles and those having a different type of 
stress-strain state. 
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